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S P E C I F I C A T I O N S

Size 18HP

Depth 25mm

Power Consumption +12V 50mA

−12V 50mA

Tuning Range 1.2Hz–61kHz

Tuning Accuracy ~8 octaves

Output Range (each) −5V–+5V peak

Output Range (mix) −8V–+8V peak

Input Impedance 30kΩ (fm), 50kΩ (phase), 100kΩ (v/o),

22kΩ (sync)

Output Impedance 330Ω (out), 3kΩ (mix)

Output Drive 20kΩ+

I N S T A L L A T I O N

Before installing the module, make sure the power is off. Attach the power cable to the module and

to the bus. Double check the alignment of  the red stripe (or the brown wire for a multicolor cable)

with the markings on the module and the bus. The red stripe should correspond with −12V, as is

standard in Eurorack. Check the documentation of  your bus and power solution if  you are unsure.

Screw the module to the rails of  the case using the provided screws. (M2.5 and M3 size screws are

provided.)

New Systems Instruments modules all have keyed headers and properly wired cables. But please

remember to double check the other side of  the cable for proper installation with the bus.

Additionally, if  using a different power cable, note that not every company wires modular power

cables such that the red stripe will align properly with a keyed header. While our modules are re-

verse polarity protected as much as is practical, it is still possible that you could damage the mod-

ule, your power supply, or another module by installing the power cable improperly.

Lastly, please fully screw down the module before powering on your case. The electronics are po-

tentially sensitive to shorts, and if  the module is not properly attached to a case, there is a risk of

contact with conductive or flammable matter.
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O V E R V I E W

The Triphase oscillator produces three different sawtooth waves at the same pitch, with indepen-

dent control over the phase of  each wave. Each output can be taken individually, or through a

bipolar mixer. When mixed, the harmonics of  the three waves reinforce or dampen each other,

giving a spectrum with evenly spaced peaks and troughs throughout the frequency range.

Phase cancellation in this pattern—known as a comb filter—is a feature of  acoustic spaces, the res-

onators of  acoustic instruments, multiple voices playing in unison, etc. Phase cancellation gives

sound a sense of  depth, spaciousness, or thickness. While there are many ways to achieve this, each

with their own sets of  advantages and disadvantages, directly synthesizing phases (the approach of

the Triphase Oscillator) has the advantages of  precise control, minimal detuning, and maximal

depth of  the effect.

Phase cancellation can also be used to bring spectra in and out of  focus, removing certain harmon-

ic multiples (such as all even harmonics) and reinforcing others. It can also alter the relative level of

the harmonics generally, moving from the strong fundamental and  slope of  a saw to the thin

sound where all harmonics are the same volume. Phase cancellation thus forms an important part

of  the general synthesis toolkit.

H O W  T O  R E A D  T H I S  M A N U A L

This manual is intended to be an in depth resource for continuing exploration as you continue

your journey through sound and synthesis. While the controls of  this module are simple, this man-

ual provides a deep analysis of  how those controls perform in a wide variety of  contexts and ap-

plications. It is not at all required for you to read the whole manual before using the module. Read

according to your own learning style. I recommend reading over the Overview and Interface sec-

tion, then going through Quick Start and trying out some patches. From there, browse through the

rest of  the sections and read what interests you. If  you already understand a lot of  the underlying

theory, you can look through the Model and Parameters sections at the end and find the equations

that govern the module’s behavior, but these sections assume a lot of  prior knowledge.

A note on the mathematics: many sections of  this manual contain mathematical equations. These

equations aid understanding, but where possible the text was written in such a way that you should

be able to skip past them and still understand the basics. So read through with confidence, even if

you don’t understand the math yet. There are a few sections specifically focused on mathematics

where that is not the case, but you can safely skip over these sections, too.

I do recommend you make an effort to learn and understand the mathematics of  synthesis. Just

like music theory is the language of  music, mathematics is the language of  synthesis. You can be

an excellent musician without knowing any music theory, and an excellent synthesist without know-

ing any mathematics. But it’s very difficult to speak precisely about music without music theory,

and it’s very difficult to speak precisely about synthesis without mathematics. Think of  it as a tool

to help you learn from others and teach them in turn.

1/n



3

FINE

7

+−

MIX

11

+−

MIX

15

+−

MIX

19

COARSE

8

FM

9

PHASE

12
+−

P1M

13

PHASE

16
+−

P2M

17

PHASE

20
+−

P3M

21

P I T C H

P H A S E  1

P H A S E  2

P H A S E  3

10

14

18

22

V/O

1

SYNC

2

OUT 1

3

OUT 2

4

OUT 3

5

MIX

6

T R I P H A S E  O S C I L L A T O R

NEW SYSTEMS INSTRUMENTS

I N T E R F A C E

1. Volt per octave input – Controls

the oscillator frequency with an ex-

ponential scale.

2. Sync input – The oscillator is reset

when the sync input rises above ~

1.2V. Note that if  one of  the phases

would occur after the oscillator re-

sets, that phase will be silent.

3. First wave output – An indepen-

dent output for the PHASE 1 wave.

4. Second wave output – An inde-

pendent output for the PHASE 2
wave.

5. Third wave output – An indepen-

dent output for the PHASE 3 wave.

6. Mix output – A mix of  all three

waves.

7. Fine tuning knob.

8. Coarse tuning knob.

9. Frequency modulation attenuator – An attenuator for the frequency modulation signal. Note

that to maximize the range of  this control, this is an attenuator rather than an attenuverter, as with

the other CV inputs.

10. Frequency modulation input – Linear CV control over the pitch.

11. PHASE 1 mix – Controls the amount and polarity of  the PHASE 1 wave in the mix output.

12. PHASE 1 phase – Controls the relative phase of  the PHASE 1 output, with a range of  just under

-180°–+180°

13. PHASE 1 modulation attenuverter – An attenuverter for the phase modulation signal for the

PHASE 1 wave.

14. PHASE 1 modulation – This signal adjusts the phase by 36° per volt (180° for 5 volts, 360° for

10 volts), with the attenuverter all the way up. If  the knob and CV would push the phase beyond

±180°, the phase gently folds back towards the center.

15–18. Controls for the PHASE 2 wave.

19–22. Controls for the PHASE 3 wave.
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Q U I C K  S T A R T

Pulse Width Modulation: Set PHASE 1 MIX all the way right, PHASE 2 MIX all the way left,

PHASE 3 MIX centered and take the MIX output. The relative value of  the PHASE for each wave de-

termines the width of  the pulse. To modulate, apply CV to one of  the PM inputs and adjust the at-

tenuverter. For a sound with less pitch change in the fundamental, apply the same CV to both PM
inputs, and adjust the attenuverters in equal and opposite directions.

Supersaw: Set all MIX knobs right, center the PHASE controls, apply LFOs liberally to the PM in-

puts, and take the MIX output. Since phase is relative, you can leave one of  the phases unmodulat-

ed, although modulation of  all three will produce a slightly more complex sound.

Stereo Chorus: In a stereo mixer, put OUT 1 into both channels, OUT 2 into the left, and OUT 3
into the right. Apply subtle modulation to all three phases. To increase the width, increase the

phase separation between PHASE 2 and PHASE 3.

Octave: You can get an octave signal in two ways: first, set the PHASE 1 and PHASE 2 MIX all the
way right, with PHASE 3 MIX centered. Adjust the two phase knobs to be about 9:30 and 2:30 (just above
horizontal). Nudge the phase until you can only hear the octave. To reach the octave in another way, from
the above settings adjust the PHASE 1 MIX to 3 o'clock, and the PHASE 2 MIX to 9 o'clock. This should
give you a square wave. Then set the PHASE 3 MIX all the way right, with the PHASE matching the PHASE
2 wave.

Third Harmonic: To get only the third harmonic, an octave and a fifth above the oscillator rate,

set all MIX knobs right, then set the three PHASE knobs to noon, 9 o'clock, and 3 o'clock.

P H A S E  A N D  C O M B I N I N G  S I N E  W A V E S

It is recommended that you read Principles of  Sound and Music on nsinstruments.com, or review

it if  you need to, particularly the sections on “Anatomy of  a Wave” and “Phase, Delay, and

Mixing.” This section will just be a quick reminder on the principles involved.

When two waveforms meet, they constructively or destructively interfere according to whether

peaks of  the same polarity meet, or peaks of  opposite polarities meet. For most waves, this interfer-

ence changes the shape of  the wave and the spectrum of  the sound. But two sine waves of  the

same frequency always create another sine wave with some phase and amplitude determined by

the phase and amplitude of  the other waves. That is, with sine waves, the shape is not affected,

only the amplitude and phase.

Because of  this, it is often easier to talk about how the combination of  spectra at different phases

produces a new spectrum with different amplitudes for different frequencies, than to try and figure

out how alterations in the shape of  some wave will sound. Additionally, for sine waves a 180° phase

difference and a reversal of  polarity are the same thing. We can, then, state the effect of  combining

two different spectra pretty simply.

When sine waves at the same amplitude and same phase meet, the waves reinforce each other and

we get a sine wave of  twice the amplitude at the same phase and frequency. When sine waves at

the same amplitude but 180° apart meet, the waves cancel each other perfectly to zero. In between

these two phases, the amplitude of  the resulting wave grows gradually from zero to double. Note,

however, that the effect of  relative phase on amplitude is not linear. Combining sine waves 90 de-

grees apart will produce an amplitude of   (i.e. ), rather than 1, and 1 is reached when the
phase difference is 120°.

1.4  2

https://nsinstruments.com/principles/
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When sine waves of  unequal amplitude meet, the effect of  phase difference is lessened. The most

intuitive way to think about this is to imagine that the equal parts of  the sine waves are mixed to-

gether, and then the remainder is added to this mix. While in reality that remainder will again be

different in phase from the mixed sine waves, and so the process would repeat itself, in practice not

much is lost by thinking about the remainder as just a little extra amplitude that is mixed in.

P H A S E  A N D  S P E C T R U M

A sawtooth wave can be analyzed as a spectrum of  sine waves where every sine wave is the same

phase, and each harmonic is  the amplitude of  the fundamental frequency. That is, the first

harmonic, the fundamental, has an amplitude of  , the second has an amplitude of  , the

third , etc. We can express this same thing with the following equation:

When we combine two sawtooth waves, this is the same as combining their spectra. Since in the

last section we already saw how to think about combining sine waves of  difference amplitudes and

phases, the only remaining piece of  this puzzle is to see what a shift in the phase of  the whole saw-

tooth wave does to the phase of  each individual component of  the spectrum. This is easily derived.

We can represent a sawtooth at a different phase by shifting the whole sawtooth in time by some

portion of  a cycle, that is, by replacing  with . This gives us the modified equation:

We can then rewrite the latter term to pull the  out of  the parenthesis, giving:

So in our spectrum, each harmonic has a phase difference consisting of  the phase difference of  the

saw as a whole, multiplied by the harmonic number. This makes intuitive sense when we think

about it. Since the second harmonic is twice the frequency of  the first, its phase takes up half  the

time, and so a small phase difference is twice as significant. Since these waves are periodic, a phase

difference of  360° is the same as 0°, and the differences loop around.

As an example, consider a phase difference of  45°. This would give us harmonics with the follow-

ing phase differences:

First Harmonic 45°

Second Harmonic 90°

Third Harmonic 135°

Fourth Harmonic 180°

Fifth Harmonic 225°

Sixth Harmonic 270°

1/n
1/1 1/2

1/3

saw(ωt) =
 

sin(nωt)/n
n=1

∑
∞

ωt ωt + ϕ

saw(ωt + ϕ) =
 

sin(n(ωt +
n=1

∑
∞

ϕ))/n

ϕ

 

sin(nωt +
n=1

∑
∞

nϕ)/n
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Eighth Harmonic360°

Ninth Harmonic 45°

...

In this particular sequence, we can see that by combining waves 45° apart, we would get a some-

what reinforced first and second harmonic, a somewhat reduced third harmonic, a completely can-

celed fourth harmonic, a somewhat reduced fifth harmonic, reinforced sixth, seventh, and eigth

harmonics, and then the same repeating pattern for the remaining harmonics.

When we change the polarity of  the wave, this adds 180° to each harmonic. This would transform

the above table as follows:

First Harmonic 225°

Second Harmonic 270°

Third Harmonic 315°

Fourth Harmonic 360°

Fifth Harmonic 45°

Sixth Harmonic 90°

Seventh Harmonic135°

Eighth Harmonic 180°

Ninth Harmonic 225°

...

While the increase in phase difference between any two harmonics is independent of  the polarity,

the polarity shifts the sequence as a whole. Consider two waves that are 180° apart, but opposite in

polarity. That would give us the following phase differences of  the harmonics:

First Harmonic 0°

Second Harmonic180°

Third Harmonic 0°

Fourth Harmonic 180°

Fifth Harmonic 0°

...

As you can see, this cancels all the even harmonics, leaving the odd harmonics untouched. With

sawtooth waves, this will produce a square wave. These completely canceled harmonics are the

reason this wave shape sounds “hollow,” like it is missing something. It is!

Any phase difference at all produces a series of  phase difference in the spectra of  the waves such

that frequencies cancel, reinforce, cancel again, reinforce again, etc. Because the shape of  this

graph resembles a comb, the effect on the spectrum of  combining waves of  different phases is
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The relative levels of  the first 100 harmonics when the phase difference is 15°, 10°, and 5°.

The filtering effect of  combining sawtooth waveforms at 100Hz.

known as a comb filter. Here are the reductions and enhancements on the first 100 harmonics with

various phase differences:

While the shape of  the comb filter doesn't change, as the phase difference becomes smaller, the

tines of  the comb grow wider, with the limit at zero, where the tines are infinitely wide and all har-

monics reinforce, and 180 degrees, where the comb has notches for every even harmonic. Viewed

in a more conventional frequency response, the comb looks like this:



8

F R E Q U E N C Y  A N D  D Y N A M I C  P H A S E

Phase and frequency are related, such that a steadily changing phase is exactly the same thing as

an increased frequency. Intuitively, imagine a sawtooth wave that is completely stopped—its fre-

quency is zero. If  we now advance the phase of  sawtooth at a constant rate, we are effectively

“playing back” the sawtooth, and the rate of  playback determines the frequency. Similarly, when

the sawtooth already has a frequency, “playing back” the already moving sawtooth will increase the

frequency, while decreasing the phase steadily (“playing back” in reverse) will decrease the

frequency.

The effect of  phase on frequency is often a big part of  the sound of  phase modulation. For exam-

ple, it provides the detuning sound of  a chorus effect. Nevertheless, sometimes it is desired to have

phase modulation without affecting the frequency. This will be possible when we are able to

change the relative phase of  two waves, while keeping the absolute phase of  the combined wave

constant.

Note that absolute phase does not exist, strictly speaking. That is, there is no aspect of  the universe

that allows us to differentiate between two times except through the relative timing of  two different

events. Asking when something occurs is a meaningless question unless something else has or will

occur. Nevertheless, perhaps counterintuitively, while absolute phase does not exist, absolute

change in phase does exist. In fact, the name of  absolute change in phase is just frequency. Thus, on

the one hand, we can only measure the relative phase of  two signals. For example, we can't say that

one is at phase zero and one is at phase 90°; we can only say that they are 90 degrees apart. But,

given that they begin at the same frequency, if  one of  them is changing in phase, we know which

one is changing—it’s the one with an increased or decreased pitch. If  you think there is something

either fishy or profound about a universe where the absolute change of  a value is detectable while

the absolute value itself  is not detectable, you are correct.

To understand the effect on frequency of  changing phase, we can add a rate of  phase change to

our equation. Although in practice the rate of  phase change will generally be determined by a

moving LFO that changes speed and direction periodically, we will simplify by imagining a steadily

changing phase, at some number of  degrees per second. If  we can can minimize the effect of  this

steadily changing phase, this will also minimize the effect of  an LFO, envelope, or any other signal.

The following is the equation for the harmonics of  a sawtooth oscillator, now with an element that

represents a steadily changing phase:

We can put this in two different useful forms:

The first equation shows us the effect the changing phase has on the phase of  each harmonic.

That effect is what we would expect to see. The constant and the changing phase difference add

together, and then behave like they normally would for that harmonic. The second equation, how-

ever, shows us how the changing phase affects the frequency. For example, a phase changing at the

rate of  360° per second will detune the wave by 1Hz.

saw(ωt + ϕ + φt) =
 

sin(n(ωt +
n=1

∑
∞

ϕ + φt))/n

 

sin(nωt +
n=1

∑
∞

n(ϕ + φt))/n =
 

sin(n(ω +
n=1

∑
∞

φ)t + nϕ)/n
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What matters, however, is the phase of  the combined waveforms. When two sine waves of  equal

amplitude combine, the phase of  the resulting wave is the phase in between the two phases. In this

case, then, you can remove the absolute motion of  the resulting phase by having each phase move

at an equal rate in opposite directions. When the amplitudes are not equal, the overall phase will

stay closer to the louder wave, and consequently if  the phase of  the louder wave moves less than

the phase of  the quieter wave, the effect on frequency will be minimized. Note, however, that the

motion can be perfectly canceled only when the amplitudes are exactly equal, or of  equal magni-

tude and opposite polarity.

Given the folowing two harmonics at any amplitudes, moving at arbitrary rates:

The frequency of  the resulting harmonic will be increased by:

While this exact equation is unlikely to be useful while using the Triphase Oscillator, we can still

learn a few things from it. The  terms indicate that even with a constant motion

of  phase in each signal, the changing phase relationship between the two signals will cause the

overall frequency shift to change over time. This extra term prevents us from eliminating frequency

shift, but we can still minimize its effect, according to a some concept of  what minimizing its effect

looks like.

First, note that if  we change the phase of  both waves at the same rate and in the same direction,

there is no frequency shift due to their interaction, and all the frequency shift is due to the chang-

ing phase. While this does not modulate the phase difference, and so it is not usually what we want, it

can nevertheless be useful to limit interactions when mixing with a third wave.

Second, we might want to ensure that the DC component of  this frequency offset is zero.

Counterintuitively, this occurs when the entirety of  the changing phase shift between the two waves

takes place in the wave with the least amplitude, and the wave with more amplitude has no chang-

ing absolute phase shift.

However, minimizing the DC component does not minimize the excursion from center pitch. This

is because the change in the pitch is not symmetric. It will stay fairly close to zero on one side, and

then briefly shoot far to the other side. In order to minimize these excursions, we would set each

phase modulation control as follows:

In practice, this just means that we modulate each wave inversely proportionally to its magnitude

in the mix, such that the majority of  the phase difference is placed on the smaller waves.

With three moving waveforms, or even two moving and one fixed waveform, the effects of  a

changing phase on the pitch can be quite complex. It can be characterized according to the follow-

ing equation:
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While there's only a couple more constant terms, the cosine terms have exploded to include all

three ways these waves can interact:  with ,  with , and  with . Adding one more wave triples

the interactions. Note that while the effect of   on the constant part of  the equation is still just a

multiple (just sufficient to keep all detuning harmonic), n will also affect how the three cosine waves

combine, such that at certain times some harmonics might be more detuned than others.

With three interactions, we have three phase differences to distribute amongst the phases of  each

wave. As such, it is arduous to even think through how to adjust the absolute phase changes while

preserving the relative phase changes. It’s best to just note a few inexact principles. As these princi-

ples also hold for the case of  two waves, we provide it as a summary of  the entire section.

M I N I M I Z I N G  F R E Q U E N C Y  S H I F T S :  S U M M A R Y

–When two waves are mixed with equal magnitude, regardless of  polarity, the effect of  a rela-

tive phase change on frequency can be eliminated by having each wave change its phase in

equal and opposite directions.

–When two waves are mixed with unequal magnitude, the constant offset of  the frequency

change is eliminated by assigning all of  the phase change to the wave mixed at a lower volume.

–When two or more waves have the same phase change in the same direction, the change in

pitch is unaffected by the interaction between the waves, and is only dependent on the rate of

phase change.

–When two or three waves are mixed with unequal magnitude, the effect of  a relative phase

change on frequency is minimized by distributing the phase change such that waves mixed at a

lower volume get more of  the phase change and waves mixed at a higher volume get less.

M O D E L  A N D  P A R A M E T E R S

The Triphase Oscillator provides three outputs with phase control, according to the following

equations:

These are mixed together for the mix output, according to the following equation:

 is proportional to FM, COARSE, FINE, and V/O via the following relation:

Where the FM input gives linear modulation up to a maximum of  between 0 and double the base

frequency. COARSE ranges over approximately 13 octaves, and FINE ranges over 3 octaves. With

both centered, the pitch is approximately C4, or 260Hz.
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 is a constant phase set by each PHASE knob. These range from approximately -180° to 180°.  is

an additional phase modulation signal, coming from the P1M, P2M, and P3M CV inputs and at-

tenuverters. At maximum range, each PxM input affects the phase at a rate of  36° per volt, or

±180° for a standard 5 volt peak wave.

A separate output is provided for each  wave, as OUT 1, OUT 2, and OUT 3. These waveforms are

at a 5V peak amplitude.

The mix output is a sum of  all three waves, affected by the  parameter via each MIX knob.

These are bipolar knobs ranging from  to .

ϕ φ

y  x

m  x

−1 1


